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Abstract  A 3-D model for the His Purkinje System 
(HPS) of the heart is used to solve  the direct problem 
and simulate the HPS surface electrogram. The same 
model is also used to solve the inverse problem. Results 
from normal and pathological models are described. 
 

 
I. INTRODUCTION 

 
 Many heart defects occur not in the myocardium, but in 
the specialized conduction system of the heart, so called the 
His -Purkinje system (HPS). There exist various research 
studies into possible non-invasive measurement of the HPS 
signals [1-5], including a number of modeling studies [6-8]. 
Almost all these studies were based on a two dimensional 
models taking into consideration the left bundle branch 
only or were used to investigate the effect of HPS 
abnormalities on the surface ECG and not the HPS 
electrogram.  
 

II. MODEL 
 
The authors have previously reported a modified 3-D 
model for the HPS which avoids the defects of 2-D models 
[9]. It was based on the transformation of the two 
dimensional HPS sheet onto a three dimensional 
curvilinear system which resembles the ventricles in shape 
and dimensions. Computation of the surface potential was 
carried out using classical volume conductor theory [8]. To 
compare simulation results with those obtained 
experimentally, the standard orthogonal X, Y, Z leads were 
used. For each active element, ϕ0 was defined using the 
dipole approximation: 
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 The equivalent current source j for each active element 
was assumed to be of the same magnitude, though different 
source strength can easily be introduced in the initial HPS 
matrix. A computer program explained in details in [9] was 
developed to simulate the propagation of excitation 
impulse throughout the HPS. The biopotentials originating 
from each active element were calculated individually and 
then summed to produce the total X, Y and Z HPS 
electrograms. 
 

III. DIRECT PROBLEM 
 
In the direct problem, we are trying to use our model for 
the simulation of biopotentials on the electrodes for further 
analysis by comparison with normal and pathologic cases. 
In the present paper we are trying to improve preliminary 
results [9] by changing the electrode positions for the best 

sensitivity to the potential variations caused by the defects 
in HPS. The standard algorithm explained in [9,10] was 
applied several times for different positions of the X, Y and 
Z electrodes. Every time the potentials were recorded as 
functions of time. Fig. 1. and Fig. 2. show in relative units 
the simulated potentials on the standard system of 
electrodes for the normal HPS.  Fig. 1. shows the simulated 
signals obtained from the X electrode (upper curve) and Y 
electrode (lower curve).  Fig. 2. shows the simulated signal 
obtained the form Z electrode. To study the effect of 
abnormality in the HPS, a complete Right Bundle Branch 
(RBB) block in conjunction with a partial Left Bundle 
Branc (LBB) block was simulated. This defect is known as 
left anterior hemiblock (LAH).  
 
 

Fig. 1. X and Y simulated potentials from a normal HPS 

 
 

Fig. 2. Simulated Z potential from a normal HPS 
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Fig. 3. shows the simulated LAH.  Fig. 4. presents as an 
example the simulated signal obtained from the Z lead. For 
comparison, Fig. 5. shows the signal obtained from the 
electrodes placed in the intermediate position between X 
and Z electrodes.  
 

Fig. 3. Introduced LAH defect 
 

Figure (4):  Simulated   potential from the standard Z 
electrode for the case of LAH  

 
 
 

Figure (5): Potential from an intermediate (XZ) electrode 
for the case of LAH 

Fig. 6. shows the signal obtained from the Z electrodes 
shifted 10 cm downward from the standard position. The 
electrode positions were changed several times to receive 
12 independent signals used later for the solution of the 
inverse problem.  
 

IV. INVERSE PROBLEM  

 Later [11], we presented an attempt to solve the inverse 
problem - that is to reconstruct the defect in HPS using the 
existing His Purkinje System Electrograms (HPSE). The 
main difficulty in this case is the insufficient amount of 
data to present the defect in details, so an approximate 
graphical solution was discussed in [11]. 
 The inverse problem consists of the source modeling using 
the set of potentials at every electrode as a set of data.   If 
we assume that the source is a single dipole, then we need 
only six independent electrodes to locate the source and 
define the vector of the equivalent dipole p. We solve 
numerically the system of equations: 
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where  n is the number of the electrode ( from 1 to 6),  
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 xn , y n , z n  are the coordinates of the electrode, while x, y, 
z  are the coordinates of the dipole. The solution gives three 
coordinates of the dipole x, y, z  and three components of 
the dipole vector px , py , p z . 
The single dipole approximation is not complete for many 
cases, and the real system of sources consists of a moving 
string with a distributed set of dipoles. Exact calculation for 
this case requires multiple electrodes. Geometrical 
modeling gives an approximate graphical presentation of 
the defect in a single dipole approximation, but it can show 
the position of the defect without specifying its form. We 
described in [11] the attempt of a LAH defect 
reconstruction using insufficient experimental data.  
 

Figure(6): Potential from the z -electrode, shifted 5 cm 
downward from the standard position  
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In the present paper we are trying to simulate the same 
defect and to receive maximum information varying the 
positions of the electrodes as described in the previous 
section to receive at least 2-dipole approximation. Figure 
(7) shows the 2- dipole reconstruction of the defect 
introduced in the previous section.  
 
 

V. DISCUSSION 
 

The HPS electrogram was simulated using a three-
dimentional model of the LBB and the RBB. A program 
was developed earlier to simulate the propagation of 
excitation impulse throughout the HPS. The biopotentials 
originating from each active element were calculated 
individually and then summed to produce the total X, Y 
and Z HPS electrograms. A ramp signal that precedes the 
onset of the QRS complex of the ECG was present. When 
we introduced various LAH, the ramp was deformed in 
different ways. The detailed analysis of the figures similar 
to the examples shown in Figure (5) and Figure (6) helps to 
understand that the defect in the first half of the HPS 
(beginning from His bundle) is better recognized using 
intermediate electrodes placed between X and Z electrodes. 
The defects in the second part (Purkinje ramifications) 
require a shift of the electrodes along the Y axis and so on. 
The existing program is simple and can be used in any 
standard PC helping specialists to detect various types of 
the HPS defects. 
 The inverse problem is the most interesting one but it 
meets difficulties because of the insufficient information 
from standard 6-leads systems used in cardiographs. 
Changing the electrode positions according to the 
recommendations received from the direct problem we can 
increase the amount of information. Then the inverse 
problem can be solved with the developed method for 
multiple dipoles approximations to define the position and 
the form of the defect.  
 
 

 

 
Figure (7):  Reconstructed LA H defect 

 
 

VI. CONCLUSIONS 
 
The presented 3 -D model of the heart conduction system is 
simple but together with the developed method of the 
simulation it can show the character of the signal 
propagating through the specialized conduction system of 
the heart . This information can be useful in the form of the 
direct problem resulting in the graphs showing 
biopotentials as functions of time. Those graphs can 
indicate the presence of the defects in the HPS. The same 
method can be used to solve the inverse problem beginning 
from experimental graphs and resulting in the defect 
reconstruction being especially effective in combination 
with the recommendation about the electrode positions 
taken from the direct problem.  
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